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A Rotating Sphere Viscometer 

J. V. KELKAR, R. A. MASHELKAR, and J. ULBRECHT, Dept. of 
Chemical Engineering, University of Salford, Salford M5 Q WT, England 

synopsis 
The use of a rotating sphere viscometer for the measurement of parameters in the 

flow curves of inelastic as well as viscoelastic liquids is examined. An experimental 
investigation of the primary flow around a sphere rotating in Newtonian and viscoelastic 
liquids is carried out by using a new “three-dimensional particle technique.” Currently 
available theoretical analyses of rotation of a sphere in viscoelastic liquids are shown to 
be inadequate to describe the experimental primary velocity distribution data. Theo- 
retical results for the primary distribution derived on the basis of a creeping flow of a 
power law liquid are found to describe the experimental data well. This distribution is 
then used to derive torque-angular velocity relationships, which are then confirmed 
experimentally for both inelastic and viscoelastic liquids. The results of this work 
justify the use of a rotating sphere viscometer as a useful tool for the measurement of 
parameters of flow curves of inelastic and visccelastic liquids. 

INTRODUCTION 

The usual techniques for the measurement of rheological properties of 
polymer solutions and melts make use of the simple viscometric flow ar- 
rangements (e.g., capillary flow, couette flow, cone-and-plate flow, etc.). 
Although the kinematics of the flows involved in such viscometric arrange- 
ments is quite simple (a simple shear flow), to satisfy the conditions of such 
flows is sometimes experimentally difficult. For instance, the entrance 
effects in the capillary flow have to be accurately accounted for. In the 
case of the cone-and-plate flow, the apex angle of the cone has to be ma- 
chined precisely to a very small value so as to satisfy the conditions of 
simple shear flow as closely as possible. The problem of accounting for 
inertial effects can be significant for all the rotational viscometric flows. 
Problems of nonisothermality due to the temperature rise as a result of 
viscous dissipation are also unavoidable in very small gaps. Finally, the 
stability considerations of flow may also cause difficulties in some cases. 

It is interesting to think of other simple experimental techniques which 
can be used for a meaningful measurement of the rheological properties. 
One such arrangement is the “rotational sphere viscometer.” This essen- 
tially consists of a spherical body which rotates around its own axis and is 
placed centrally in the test fluid. This experimental arrangement is fairly 
simple and cheap. It does not require more than a sensitive dynamometer 
and a provision for keeping a constant temperature of the sample liquid. 
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In a previous paper’ we have examined the rotating sphere viscometer 
(referred to as RSV hereafter) as a tool for the determination of zero-shear 
viscosity of inelastic as well as viscoelastic liquids. In this paper, we pro- 
pose a procedure for the determination of parameters of a flow curve, which 
again will be applicable to both inelastic as well as viscoelastic liquids. 

ANALYSIS OF THE PROBLEM AND PREVIOUS WORK 

Nonviscometric flows around various types of rotating bodies have been 
used extensively in polymer, food, and other processing industries. With- 
out any exact hydrodynamic analysis, they can offer point value of apparent 
viscosities if adequately calibrated by Newtonian liquids. Two non- 
viscometric rotational flows, however, have been analyzed in the past in 
order to obtain rational expressions for shear rate and shear stress from the 
calculated velocity profiles and to make use of such nonviscometric flows for 
viscometric purposes. These flows are: the flow around a rotating disc 
and also a rotating sphere. 

A rotating disc viscometer was proposed by Wichterle and Ulbrecht* 
for inelastic non-Newtonian liquids. The procedure is based upon the 
analysis of boundary layer flow of Ostwald-de Waele (power law) liquids 
in the vicinity of the rotating disc. From the torque-angular velocity 
dat,a the values of the flow index n and the consistency k can be directly 
determined. Since a true creeping flow regime around a disc rotating in 
an unbounded liquid cannot be physically materialized, the method is con- 
fined to the high-Reynolds-number laminar boundary layer flow regime. 
For viscous polymer solutions and melts it is difficult to approach this 
regime experimentally, and hence the method is applicable to rather dilute 
solutions. Kale et al.3 have, in addition, shown experimentally that the 
method cannot be used for viscoelastic liquids because the torque in the 
laminar boundary layer regime of flow is considerably reduced on account! 
of the presence of elasticity. 

The method discussed above had ignored elasticity but made use of a 
realistic model for the shear-thinning behavior. However, in the case of 
the work done so far using a rotating sphere, the analysis is based upon a 
second-order or a third-order approximation of a “simple memory fluid.” 
This model accounts for the presence of elasticity but relies upon an un- 
realistic interpretation of flow curves. Mashelkar et al. have critically 
analyzed the previous work in this category done by Giesekus14 Walters 
and Savins,6 and Hermese and have also shown that the viscosity function 
resulting from third-order approximation cannot be fitted to the actual 
flow curves for polymer solutions. 

The aim of this work is to devise an evaluation procedure for a rotating 
body viscometer under nonsimple shear flow conditions, which would use 
the power law type of interpretation of the flow curve and simultaneously 
to analyze the extent to which elastic and other second-order effects affect 
both the primary velocity distribution as well as the torque-angular ve- 
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locity curvm. A rotat.ing sphere has been chosen for this matter because 
of its simp1 icity. 

THEORETICAL 

As pointed out earlier, in the conventional viscometric arrangements the 
kinematics of the flow are simple in the sense that there is only one non- 
vanishing velocity component depending on only one coordinate direction. 
Hence, defining the velocity distribution and calculating shear rate and 
shear stress distribution and eventually the torque (or the pressure drop) 
is a straightforward problem. Unfortunately, this problem is quite diffi- 
cult in the case of RSV. In the following, we briefly summarize and simul- 
taneously analyze the situations which arise as the rotational speed of the 
sphere as well as the rheological complexities of the fluids increase. 

Consider that the radius of the sphere is a and that it rotates steadily 
with the angular velocity D about a vertical diameter, the liquid extending 
to infinity in all directions. We refer all the quantitics concerning the 
liquid to spherical polar coordinates (r, 8, $), T being measured from the 
center of the sphere and 0 = 0 representing the axis of rotation; v,, ve, and 
v* are the respective velocity components of the velocity vector v. 

Consider a Newtonian liquid of density p and viscosity qo in which a 
sphere is rotating at low Reynolds number (Re << 1). There is no sccon- 
dary flow and hence v, = Ve = 0. This problem is simply solved,? and the 
primary or rotational flow distribution is 

flu3 sin e v* = ___ 
r2 

and the torque on the sphere T is calculated as 

T = 8rraQqo. (2) 
At higher Reynolds numbers (Re > l), the secondary flow effects come into 
picture. The fluid is drawn toward the sphere along the axis of rotation 
and is thrown away along the equator because of the centrifugal forces. 
In this case, v,, ve, and v+ are all finite and the solution of the equation of 
motion is more difficult. The velocity distribution is now given8 as 

pln2a5 

870r2 
0, = - (1 - ~ / r ) ~ ( 3  sin% - 2) 

pS12a6 

4 w 3  
Ve = - (1 - a/r) sin 8 cos 8 

(3) 

(4) 

(5) 
flu3 sin 8 p2D2a4 4 v*=-+- [HI sin e + H3(sin% - - sin e)] 

r2 TO2 5 
where 
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and 

The torque on the sphere is calculated as 

n- T = 85raQq0 + - Q3a7p2q0. 
150 

The problem of the solution of equation of motion for non-Newtonian 
liquids presents considerably more difficulties. For the most general case 
of a viscoelastic liquid, there are many anomalies observed under different 
flow conditions. In the simplest case of a simple shear flow, such a liquid 
exhibits a shear thinning viscosity and also normal stresses. Several con- 
stitutive equations expressed in properly invariant formss are able to show 
these peculiarities a t  least qualitatively. However, even when the form 
of stress predicted by even the simplest of such constitutive equations is 
substituted in the equation of motion, we have quite a complicated situa- 
tion due to the nonlinear constitutive relationships portraying the rheo- 
logical complexities of the viscoelastic liquids as well as the nonlinear 
inertial terms. 

An alternative is usually found by using a relatively simple constitutive 
equation (such as a third-order approximation) and using approximate 
mathematical techniques (such as perturbation analysis). In the particu- 
lar case of a rotating sphere, the information derived by this procedure is 
only qualitative, in that it can help us in showing that the rotation of 
sphere can produce some strange flow patterns. Such velocity distribu- 
tions, however, cannot be used for an exact quantitative assessment of the 
torque on the sphere because, for example, the approximation of a third- 
order fluid is valid only in the asymptotic region of vanishingly small 
deformation rates and as such is far from satisfied in practical situations. 
When using approximations of higher orders, the problem of determining 
the torque exerted on the surface of the sphere becomes mathematically 
untractable, apart from the fact that the number of adjustable parameters 
becomes impracticably large. However, reasonable assumptions can be 
made for the evaluation of the torque if one critically analyses the primary 
and secondary flows. 

The mathematical expression for the torque exerted on the sphere is 
given by integrating the shear stress rT+ on the surface of the sphere and 
multiplying the resulting force by the lever arm. Thus, the expression for 
the torque is 

T = rr+ 2ra3 sin 28 do. (9) 
IT= .  

The expression for rr+ is dependent only on the space derivatives of v, (the 
primary flow) in the spherical coordinate system. Thus, for instance, in 
the case of a Newtonian liquid, 
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This means that only the extent of modification of the primary flow, v,, 
particularly in the vicinity of the sphere, contributes to the changes in the 
magnitude of the torque. If one now examines the expressions for v, in the 
case of a Newtonian liquid, one finds that the presence of secondary ve- 
locity has not really substantially contributed to the primary flow, and it 
could still be well approximated by the expression valid in the creeping flow 
regime, eq. (l), particularly very near the sphere. This indicates that up 
to a certain limit the torque is not substantially affected by the presence 
of such inertial effects. More quantitatively, if one rewrites eq. (8) as 

c, = + &) 
where C, = power number = T / ~ U % ! ~ ,  then it is seen that even at  Re = 5, 
the contribution to the torque on the sphere is only about 4.25%. If we 
now examine the expression for v, in the case of a viscoelastic liquid,a once 
again it is clearly seen that the combined influence of inertia and elasticity 
does not affect v, and consequently the torque in a substantial way. This 
observation has some importance because it tells us that a good approxi- 
mation to v, could be found by approximating it by the expression under 
creeping flow conditions. The problem of solution of the equation of mo- 
tion under creeping flow conditions is rather simple. The equation of 
motion in the 4 direction of the spherical coordinate system is given as 

dTr+ Tr+ - + 3 - - 0 .  br r 

The above equation has to be solved with the B.C. 

and 
v6 = ail sin 8 a t  r = a 

v , = O  a s r - m .  

If we assume that the flow behaviour of the liquid is well represented by a 
power law model, then we have 

Substituting eq. (15) in (12) and solving, we get an expression for v+ as 

Substituting eq. (16) back in (15) gives the shear stress distribution as 
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Fig. 1. The integral in eq. (18) plotted BB a function of n. 

Substituting this expression for r,.+ in eq. (9) and integrating, the torque 
on the sphere is obtained as 

The integral has to be evaluated numerically. A graph of the value of the 
integral as a function of the flow behavior index n is given in Figure 1. 

The validity of such a simple approximation for v, as well as the torque 
on the sphere could only be tested experimentally by measuring both the 
velocity distribution as well as the torque exerted on the sphere in different 
liquids. 

EXPERIMENTAL 
Four different spheres (radii from 0.635 to 2.64 cm) were used for the 

purpose of experimental work. Billiard balls were found to be quite 
suitable for this purpose. Most of the work was done in a 30-cm-diam. 
cylindrical vessel. In the case of the determination of velocity distribu- 
tion, a square vessel of dimensions 34 cm X 34 cm was used. This avoided 
the difficulties due to optical distortion. The liquids used were an aqueous 
solution of sodium salt of carboxy methyl cellulose (CMC) (Edifas B ICI), 
aqueous solutions of polyacrylamide (PAA) (Separan AP30, Dow Chemi- 
cals), and a mixture of an aqueous solution of PAA and hydroxyethyl 
cellulose (HEC). 

All the work was performed in a constant-temperature room at a tem- 
perature of 20" * 1°C. The flow curves and normal stress data were ob- 
tained on a Weissenberg rheogoniometer (Model R18) at the same tem- 
perature at which the rotational sphere experiments were conducted. 



ROTATING SPHERE VISCOMETER 3075 

Measurement of Torque 

An indigenously manufactured flexible drive shaft dynamometer was 
used for the measurement of torques. The details of this dynamometer 
are given by Mashelkar et al.’ and Kelkar.l0 

Measurement of Velocity Distribution 

Different techniques of measurement of velocity distribution have been 
used in the past by different workers. KelkarlO has summarized these 
methods and clearly pointed out the respective advantages and disad- 
vantages. 

In  this work, we have used a new optical technique, which may be called 
a “three-dimensional particle technique.” The principle of the technique 
is to make the suspended neutrally buoyant particles follow the fluid motion 
and track their motion in mutually perpendicular directions by using two 
cameras. If the work is carried out in dark surroundings, then a bright 
light source flashing at specific predetermined time intervals allows one to 
establish the motion of the particles in the form of multiple-exposure 
photographs from the two directions. From each of these photographs 
one can specify the position of the particle in space with respect to a fixed 
frame of reference in any coordinate system and a t  different intervals of 
time. The differentiation of these position-time data yields the informa- 
tion about the instantaneous velocity as well as the velocity distribution. 
This technique has many advantages; in particular, one is in a position to 
trace not only the paths of the particles but also the exact magnitude of 
all the velocity components. 

Two large electronic strobe units were fiked along the side of a square 
perspex vessel (34 cm X 34 crn) which contained the test fluid. The 
length of each flash was 5 X 10-3 sec. The interval between each flash 
could be controlled by a constant frequency generator. The vessel was 
placed on a transparent platform and underneath it was placed at inclined- 
front silvered mirror. Two cameras (35-mm single-lens reflex type fitted 
with a telephoto lens of 135 mm focal length) were placed in such a way 
that each was approximately 8 feet optical distance away from the rotating 
body. High-density polystyrene and Cpolyethylene particles painted with 
a polyurethane emulsion were used as tracer particles. Painting the par- 
ticles helped in adjusting the density of the particles equal to that of the 
medium in which they were suspended. This also helped in improving the 
reflected light and this made the particles more tractable. 

During an experimental run, the particles were placed in the test fluid 
below the equator of the sphere. The sphere was set in motion and its 
speed was adjusted to a predetermined value. The whole room was now 
made dark and the shutters of the cameras now opened. The strobes 
were made to flash five to fifteen times at the right frequency. This pro- 
cedure recorded on the photographic film the position of the tracer particles 
a t  the instant of each flash. The film was developed in Ilford Microphane 
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devclopcr to gct fincyyain and high-resolution photographs. An X-Y 
analyzer was used to nwasurc accuratdy tlic position of thc particles 
w.r.t. the ccntcr of thc sphrrcx. The. pliotographs from tho two mutually 
pcrpcridicular dircvtions ww combinod to givc tho rcctnngular coordinatcs 
(X, Y, and 2) of thc partiel(.. Thcsc w r c  thtm convc.rtcd to tho sphcrical 
coordinatcs (r .  6, 6)  by using thc \vcll-knoivn convcrsions. l 1  Thc primary 
flow field mas then found by diffcreritiatirig tho data as, 

Sufficiently small incrcmwnts (At# and At)  cnsurcd that thc approximation 
implicd in cq. (19) was followed closcly. kcor any furthcr details rcfercnce 
10 may bc consultcd. 

The work on vclocity distribution was done with a singlc sphere of 
radius 2.64 cm rotating at 50 and 200 rpm in a Kcwtonian fluid (glyccrinc) 
and a viscoclastic fluid (I’AA-HEC mixturc). The lattcr was spccially 
used for this work sincc it gave much bcttcr transparency than only an 
aqucous PAA solution. 

RESULTS AND DISCUSSION 

Wc will first cxamino tho problem of vclocity distribution. In the case 
of thc glyccrinc solution at  both 60 rpm (Re = 2.6) and 200 rpm (Re = 
10.4), strong sccondary vclocities wcrc obscrvcd and the pattern of flow 
was qualitntivcly thc same as dcscribcd carlicr. For a quantitativc com- 
parison of the cxpcrimcntal primary vclocity distribution, we use cq. (1) 
to  chcck the deviation from thc distribution prcdicted by crccping flow. 
Equation (1) may bc rcwrittcn &s 

Thus plotting &+,/(r sin 0) versus r on a log-log scale should give a line of 
slope -3, and thc linc should also satisfy the boundary condition v, = 
rQ sin 6 whcn r = a. Such plots based on cq. (20) are made a t  both the 
rotational spceds and arc given in Figurcs 2 and 3. Thc figures show that 
up to r /a  = 4, the primary flow was wcll dcscribcd by the theoretical ex- 
pression (20) cvcn though thcrc was a strong secondary flow present. At 
r/a > 4, therc is some divergence and this could be attributed partially to 
the influence of the walls. Thc theorctical expression is calculated based 
on the assumption that thc fluid extends to infinity. Hence, ncar the wall 
this exprcssion appcars to fail. 

It is important now to consider the contribution to the torque on the 
sphcre because of velocity gradients a t  different positions in the fluid. 
Thc expression for shear strcss distribution for a Newtonian fluid is given 
by 
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Fig. 2. Primary velocity distribution for a sphere rotating in a Newtonian glycerol solu- 
tion compared with the theoretical result (rpm = 50). 

It is seen that the contribution of the shear stress to the overall torque on 
the sphere reduces considerably as one approaches larger radial distances. 
Thus, a t  r/a = 4, the contribution is only l/&h of that a t  r /a  = 1, and 
even smaller a t  further radial distances. This indicates that the presence 
of finite walls in a practical viscometer is unlikely to contribute significantly 
to the measurement of torque, and consequently it is unlikely to cause a 
significant error in the measurement of rheological parameters. 

We now examine the primary velocity distribution in the viscoelastic 
liquid. The shear stress-shear rate and the primary normal stress differ- 
ence-shear rate data for this fluid were obtained on the Weissenberg 
rheogoniometer. The solution showed a strong shear-thinning viscosity. 
A power law was fitted to the flow curve, and the resulting parameters were 
K = 74.5 and n = 0.454. The solution showed strong normal stress differ- 
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Fig. 3. Primary velocity distribution for a sphere rotating in a Newtonian glycerol solu- 

tion compared with the theoretical result (rpm = 200). 

ences as well. For instance, at a shear rate of 10 sec-I, i t  showcd shear 
stress of 180 dyne/cm?, whereas the primary normal stress difference was 
500 dyne/cm2. 

A qualitative observation of the flow patterns in such a solution was 
made when the sphere was rotated at 50 rpm and 200 rpm. It was found 
that although the secondary flow was generated because of thc presence 
of inertia as well as elasticity, the influence of elasticity was far more 
dominating. Thus, the entirc flow field in the fluid was complctcly re- 
versed. In the experiments with thc Newtonian liquids at the sanie rota- 
tional speeds the liquid was drann from the polcs and thrown away near 
the equator. In  the case of this viscoclastic liquid, however, the fluid was 
drawn in near the equator and thrown away a t  the poles. The secondary 
flows obscrvcd in Newtonian and viscoelastic liquids arc shown qualita- 
tively in Figure 4. 
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e: n 
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Fig. 4. Secondary flow in (a) viscoelastic liquid and (b) Newtonian liquid. 

The influence of such a strong secondary flow due to inertia and elasticity 
on the primary velocity distribution is now examined. The theoretical 
expression used for comparison was bhat approximated by equation (16). 
This expression may be rewritten as, 

(22) 

Once again a plot of v+/(r sin 6 )  versus r on a log-log scale should give the 
slope as - 3/n and also satisfy the boundary condition v+ = 1-Q sin B a t  r = 
a. E'igurcs 5 and 6 show the comparison betwecn the theoretical and ex- 
perimental values. Inspitc of the presence of strong secondary velocities, 
the data appear to be very well approximated by the expression (22). 

The corresponding velocity distribution for a Newtonian liquid is also 
shown. The previous theoretical a n a l y s e ~ ~ ~ ~  predict little or no departure 
of the primary velocity distribution from tho Kewtonian velocity distribu- 
tion. The divergence of the experimental velocity distributions from this 
line clearly points out the inadequacy of the theoretical analyses, which 
has been emphasized earlier. It is interesting further to see that the wall 
effects observed in the previous case were not detected in this case. This 
is perhaps due to the strong shear dependence of viscosity (low value of n). 
Equation (22) shows that v,/(?.s2 sin 0 )  is reduced much more rapidly than 
in the case of a Newtonian liquid. This damping effect is perhaps respon- 
sible for the sound agrcement near the wall. 

These favorable comparisons for the velocity distributions give some 
encouragement for examining the torque- angular velocity data in thc light 
of eq. (18). Rearranging this equation as 

log (T/u3) = log { 47rK(3/n)* s,"2 (sin e ) * + n  + 1) log n (23) 

indicates that a plot of log (T/a3) versus log Q gives n as the slope, and the 
consistency indcx K could be obtained from the intercept. Figure 7 
shows one such typical plot for a polyacrylamide solution (1%). The 
data were obtained by rotating three spheres of radii 0.635, 1.27, and 1.765 
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Fig. 5. Primary velocity distribution for a sphere rotating in a viscoelastic PAA-HEC 
solution compared with the theoretical result (rpm = 50). 

cm, respectively. A good straight line is obtained. The values of K = 
44.7 and n = 0.38 obtained from such a plot compare very favorably with 
those obtained from a Weissenberg rheogoniometer, which were K = 45.2 
and n = 0.37. The CMC solution used in this work did not show any 
measurable normal stress differences and was considered to be inelastic as 
compared to PAA solutions, which were strongly viscoelastic. Table I 
shows a comparison between the values of K and n obtained from a rotating 
sphere viscometer and the Weissenberg rheogoniometer. A satisfactory 
agreement is found in all the cases. 

These results appear to  be encouraging and establish a rotating sphere 
viscometer as a useful tool for the measurement of the parameters in the 
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Fig. 6. Primary velocity distribution for a sphere rotating in a Viscoelwtic PAA-HEC 
solution compared with the theoretical result (rpm = 200). 

flow curve. A further discussion of the use of such a viscometer is in 
order. The following points need to be considered in this respect: 

1. In order to avoid wall effects, a sufficiently large ratio of the vessel 
diameter to the sphere diameter will have to be maintained. This will 
necessitate a rather large volume of liquid (up to 20 liters). This is a clear 
disadvantage when only small samples are available. As shown in this 
work, however, ratio of vessel diameter to sphere diameter as low aa 5 
could be kept, which could reduce the sample requirement considerably. 



3082 KELKAR, MASHELKAR, AND ULBRECHT 

2ooom Jf 

200 I I I I 1  I 

0.1 0.2 0.4 0.6 08 1.0 2.0 
A s e 2  

0 

Fig. 7. Experimental plot of log (T/aa) vs. log for 1 % PAA solution obtained on a 
RSV: (X) 2.64-cm-diam. sphere; (0)  1.765-cm-dim. sphere; (A) 1.27-cm-dam. 
sphere. 

2. The analysis in this work shows how to obtain the parameters in the 
equation describing the flow curve but does not show how to obtain a 
mean shear stress-shear rate curve. This means that the equation chosen 
for describing the flow curve must be adequate in the range of average 
shear rates encountered in the rotating sphere viscometer. Due to the 
local variation in shear rates, it is difficult to ascribe an exact value of a 
representative shear rate. However, since the flow curves can generally 
be correlated satisfactorily over at  least two to three orders of magnitude 
of shear rates, even an approximate order-of magnitude estimate may be 
useful. For this reason, a pseudo-Newtonian average shear rate' of 3r/4s2 
may be used as a rough estimation of average shear rate a t  each s2. 

3. The viscometer can be used for both inelastic and viscoelastic liquids 
but its use is recommended only at moderate Reynolds numbers (Re 5 5) .  
This is not too severe a restriction provided the test liquids are sufficiently 
viscous, which is anyway the case with most polymer solutions of reason- 
ably high concentrations and polymer melts. 

TABLE I 
Comparison of the Parameters of Ostwald-de Waele Model Obtained from 

Weissenberg Rheogoniometer and Rotating Sphere 

dyne sec" 
cme K, ___ n 

Rotating Rotating 
Solution used Wekenberg sphere Weissenberg sphere 

1% CMC (inelastic) 50 47.6 0.63 0.59 
1% PAA (viscoelastic) 45.2 44.7 0.37 0.38 
2% PAA (viscoelastic) 133.3 130.7 0.31 0.32 
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